

PRODUCT INFORMATION

ZAMAC HAMMER-SCREW[™]

Nail Anchor

PRODUCT DESCRIPTION

The Zamac Hammer-Screw is a unique, one-step nail drive anchor featuring a Phillips type head and a screw thread for use in concrete, block, brick or stone. It is available in 1/4" diameter and lengths ranging from 3/4" to 3". With a body formed from corrosion resistant Zamac alloy and a zinc plated carbon steel or Perma-SealTM coated drive screw, this anchor has been developed as an improvement over standard nailin anchors.

The Zamac Hammer-Screw has been designed to provide a removable anchor with higher tension load capacities compared with traditional nailin when installed in concrete.

The anchor is not recommended for overhead, life-safety or sustained tensile loading applications unless special considerations are given to the allowable loads. (see performance data section).

Electrical Fixtures

Surveillance equipment

Maintenance

• Signage

GENERAL APPLICATIONS AND USES

- Roof Flashings
- HVAC and Mechanical Attachments
- Brick Ties and Masonry Anchorage
- Drywall track

FEATURES AND BENEFITS

- + General purpose anchoring
- + Installs in a variety of base materials
- + Removable anchor when screw is backed out with a Phillips head driver

APPROVALS AND LISTINGS

• Federal GSA Specification Meets the proof load requirements of FF-S-325C, Group V, Type 2, Class 3, (superseded) and CID A-A 1925A, Type 1

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastenings. Nail Anchors shall be Zamac Hammer-Screw anchors as supplied by Powers Fasteners, Inc., Brewster, NY.

INSTALLATION AND MATERIAL SPECIFICATIONS

Installation Specifications

Dimension	Anchor Diameter, d
Dimension	1/4
ANSI Drill Bit Size dыt (in.)	1/4
Fixture Clearance Hole (in.)	5/16
Head Height (in.)	9/64
Head Width dы (in.)	35/64

INSTALLATION GUIDELINES

Drill a hole into the base material to a depth of at least 1/4" deeper than the required embedment. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Blow the hole clean of dust and other material.

Insert the anchor through the fixture. Drive the screw into the anchor body to expand it. Be sure the head is seated firmly against the fixture and that the anchor is at the proper embedment.

To remove – Press a Phillips screw driver firmly into the screw head and turn counterclockwise. Remove the screw from the anchor body, then pry out the fixture and anchor body simultaneously by working the claw of a hammer under the fixture

SECTION CONTENTS

General Information Installation and Material Specifications Performance Data Design Criteria

ZAMAC HAMMER-SCREW

ANCHOR MATERIALS

- Zamac Alloy with Carbon Steel Drive Screw
- Perma-Seal Coated Carbon Steel
 Drive Screw

ANCHOR SIZE RANGE (TYP.)

• 1/4" x 3/4" to 1/4" x 3" diameter

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Hollow Concrete Masonry (CMU)
- Brick Masonry
- Stone

Material Specifications

	Components
Anchor Component	Mushroom Head Carbon Steel Screw
Drive Screw	AISI 1018
Anchor Body	Zamac Alloy
Screw Plating	ASTM B 633, SC1, Type III (Fe/Zn5)
Screw Coating	Perma-Seal Fluoropolymer

PERFORMANCE DATA

Nominal	Minimum	Inimum Concrete Compressive Strength - f'c (psi)							
Anchor Diameter	Embedment	2,000 psi (13.8 MPa)	4,000 psi (27.6 MPa)	6,000 psi (6,000 psi (41.4 MPa)		
d in.	Depth in. (mm)	Tension (lbs.) (kN)	Shear (lbs.) (kN)	Tension (lbs.) (kN)	Shear (lbs.) (kN)	Tension (lbs.) (kN)	Shear (lbs.) (kN)		
	5/8	675	650	850	880	890	880		
	(15.9)	(3.0)	(2.9)	(3.8)	(4.0)	(4.0)	(4.0)		
	3/4	790	805	1,135	1,115	1,190	1,115		
	(19.1)	(3.6)	(3.6)	(5.1)	(5.0)	(5.4)	(5.0)		
	7/8	930	990	1,205	1,230	1,250	1,230		
	(22.2)	(4.2)	(4.5)	(5.4)	(5.5)	(5.6)	(5.5)		
1/4	1-1/8	1,220	1,365	1,350	1,470	1,450	1,470		
(6.4)	(28.6)	(5.5)	(6.1)	(6.1)	(6.6)	(6.5)	(6.6)		
	1-3/8	1,325	1,555	1,450	1,645	1,530	1,645		
	(34.9)	(6.0)	(7.0)	(6.5)	(7.4)	(6.9)	(7.4)		
	1-3/4	1,480	1,840	1,600	1,910	1,660	1,910		
	(44.5)	(6.7)	(8.3)	(7.2)	(8.6)	(7.5)	(8.6)		
	1-7/8	1,480	1,840	1,600	1,910	1,660	1,910		
	(47.6)	(6.7)	(8.3)	(7.2)	(8.6)	(7.5)	(8.6)		

Ultimate Load Capacities for Zamac Hammer-Screw in Normal-Weight Concrete¹²

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

Allowable Load Capacities for Zamac Hammer-Screw in Normal-Weight Concrete¹²³

Nominal	Minimum	Minimum Concrete Compressive Strength - f'c (psi)									
Anchor Diameter	Embedment	2,000 psi (13.8 MPa)		4,000 psi (27.6 MPa)	6,000 psi ((41.4 MPa)				
d in.	Depth in. (mm)	Tension (lbs.) (kN)	Shear (lbs.) (kN)	Tension (lbs.) (kN)	Shear (lbs.) (kN)	Tension (lbs.) (kN)	Shear (lbs.) (kN)				
	5/8	170	165	215	220	225	220				
	(15.9)	(0.8)	(0.7)	(1.0)	(1.0)	(1.0)	(1.0)				
	3/4	200	200	285	280	300	280				
	(19.1)	(0.9)	(0.9)	(1.3)	(1.3)	(1.4)	(1.3)				
	7/8	235	250	300	310	315	310				
	(22.2)	(1.1)	(1.1)	(1.4)	(1.4)	(1.4)	(1.4)				
1/4	1-1/8	305	340	340	370	365	370				
(6.4)	(28.6)	(1.4)	(1.5)	(1.5)	(1.7)	(1.6)	(1.7)				
	1-3/8	330	390	365	410	385	410				
	(34.9)	(1.5)	(1.8)	(1.6)	(1.8)	(1.7)	(1.8)				
	1-3/4	370	460	400	480	415	480				
	(44.5)	(1.7)	(2.1)	(1.8)	(2.2)	(1.9)	(2.2)				
	1-7/8	370	460	400	480	415	480				
	(47.6)	(1.7)	(2.1)	(1.8)	(2.2)	(1.9)	(2.2)				

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

2. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

3. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

Ultimate and Allowable Load Capacities for Zamac Hammer Screw in Hollow Concrete Masonry^{1,23}

Nominal	Minimum	f´m ≥ 1,500 psi (10.4 MPa)					
Anchor Diameter	Embedment Depth	Ultima	te Load	Allowable Load			
d	h⊭	Tension	Shear	Tension	Shear		
in.	in.	lbs.	lbs.	lbs.	lbs.		
(mm)	(mm)	(kN)	(kN)	(kN)	(kN)		
	5/8	420	1,160	85	230		
	(15.9)	(1.9)	(5.2)	(0.4)	(1.0)		
	3/4	825	1,215	165	245		
	(19.1)	(3.7)	(5.5)	(0.7)	(1.1)		
1/4	1	1,000	1,265	200	255		
	(25.4)	(4.5)	(5.7)	(0.9)	(1.1)		
(6.4)	1-1/8	1,090	1,290	220	260		
	(28.6)	(4.9)	(5.8)	(1.0)	(1.2)		
	1-3/8	1,145	1,345	230	270		
	(34.9)	(5.2)	(6.1)	(1.0)	(1.2)		
	1-1/2	1,145	1,345	230	270		
	(38.1)	(5.2)	(6.1)	(1.0)	(1.2)		

1. Tabulated load values are for anchors installed in minimum 6-inch wide, Grade N, Type II, medium and normal-weight and lightweight concrete masonry units. Mortar must be Type N, S or M. Masonry compressive strength must be 1,500 psi minimum at the time of installation. Masonry cells may be grouted.

2. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provied the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

3. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

Ultimate and Allowable Load Capacities for Zamac-Hammer Screw in Solid Clay Brick Masonry^{1,2,3}

Nominal	Minimum	f′m ≥ 1,500 psi (10.4 MPa)					
Anchor Diameter	Embedment Depth h [,] in. (mm)	Ultima	te Load	Allowable Load			
d in. (mm)		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear Ibs. (kN)		
	5/8	680	1,400	135	280		
	(15.9)	(3.1)	(6.3)	(0.6)	(1.3)		
	3/4	930	1,600	185	320		
	(19.1)	(4.2)	(7.2)	(0.8)	(1.4)		
1/4	1	990	1,600	200	320		
	(25.4)	(4.5)	(7.2)	(0.9)	(1.4)		
(6.4)	1-1/8	1,040	1,600	210	320		
	(28.6)	(4.7)	(7.2)	(0.9)	(1.4)		
	1-3/8	1,150	1,600	230	320		
	(34.9)	(5.2)	(7.2)	(1.0)	(1.4)		
	1-1/2	1,260	1,600	250	320		
	(38.1)	(5.7)	(7.2)	(1.1)	(1.4)		

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm ≥ 1,500 psi).

2. The tabulated values are for anchors installed at a minimum of 16 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 8 anchor diameters on center provide the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing.

3. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

DESIGN CRITERIA

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

1

$$\left(\frac{Nu}{Nn}\right) + \left(\frac{Vu}{Vn}\right) \leq$$

 $N_u = Applied Service Tension Load N_n = Allowable Tension Load V_u = Applied Service Shear Load$

 $V_n = Allowable Shear Load$

Load Adjustment Factors for Spacing and Edge Distances in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	s _{cr} = 10d	FNs = Fvs = 1.0	Smin = 5d	FNs = Fvs = 0.50
	Tension	c _{er} = 12d	FNc = 1.0	Cmin = 6d	FNc = 0.80
Edge Distnace (c)	Shear	c _{cr} = 12d	FVc = 1.0	$C_{min} = 6d$	FVc = 0.50

Where:

 Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

ORDERING INFORMATION

Mushroom Head with No. 2 Phillips Head Screw

Peco Part Number	Bar Code	Anchor Size	Drill Diameter	Package Type	Package Quantity	Wt./ 100
2702J	96442	1/4" x 3/4"	1/4″	Jar	100	1-1/2
2703J	96444	1/4" x 1"	1/4″	Jar	100	1-3/4
2704J	96446	1/4" x 1-1/4"	1/4″	Jar	100	2-1/4
2705J	96448	1/4" x 1-1/2"	1/4″	Jar	100	2-1/2
2706J	96450	1/4" x 2"	1/4″	Jar	100	3
2709	33018	1/4" x 2-1/2"	1/4″	Box	100	3-1/2
2710	33018	1/4″ x 3″	1/4″	Box	100	4-1/4

Mushroom Head with No. 2 Phillips Head Perma-Seal Screw

Peco Part Number	Bar Code	Anchor Size	Drill Diameter	Package Type	Package Quantity	Wt./ 100
Available by	Special Order	1/4" x 1-1/4"	1/4″	Вох	1,000 or 100	2-1/4

© 2015 Powers Fasteners, Inc. All Rights Reserved. Zamac Hammer-Screw is a registered trademark of Powers Fasteners, Inc. For the most current product information please visit www.powers.com.